NB3N51034

3.3V, Crystal to 100MHz/ 200MHz Quad HCSL/LVDS Clock Generator

The NB3N51034 is a high precision, low phase noise clock generator that supports spread spectrum designed for PCI Express applications. This device takes a 25 MHz fundamental mode parallel resonant crystal and generates 4 differential HCSL/LVDS outputs at 100 MHz or 200 MHz (See Figure 6 for LVDS interface). The NB3N51034 provides selectable spread options of $-0.5 \%,-1.0 \%,-1.5 \%$, for applications demanding low Electromagnetic Interference (EMI). No spread setting is also available.

Features

- Uses 25 MHz Fundamental Mode Parallel Resonant Crystal
- Power Down Mode
- 4 Low Skew HCSL or LVDS Outputs
- OE Tri-States Outputs
- Spread of $-0.5 \%,-1.0 \%,-1.5 \%$ and No Spread
- PCIe Gen 1, 2, 3 Jitter Compliant
- Phase Noise (SS OFF) @ 100 MHz :

Offset	Noise Power
100 Hz	$-110 \mathrm{dBc} / \mathrm{Hz}$
1 kHz	$-123 \mathrm{dBc} / \mathrm{Hz}$
10 kHz	$-134 \mathrm{dBc} / \mathrm{Hz}$
100 kHz	$-137 \mathrm{dBc} / \mathrm{Hz}$
1 MHz	$-138 \mathrm{dBc} / \mathrm{Hz}$
10 MHz	$-154 \mathrm{dBc} / \mathrm{Hz}$

- Operating Range $3.3 \mathrm{~V} \pm 5 \%$
- Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Functionally Compatible with IDT557-05, IDT5V41066, IDT5V41236
- These are $\mathrm{Pb}-F r e e ~ D e v i c e s ~$

Applications

- Networking
- Consumer

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

TSSOP-20
DT SUFFIX CASE 948E

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

MARKING DIAGRAM ABABABABAH NB3N
1034
ALYW:

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

- Computing and Peripherals
- Industrial Equipment
- PCIe Clock Generation Gen I, Gen II and Gen III End Products
- Switch and Router
- Set Top Box, LCD TV
- Servers, Desktop Computers
- Automated Test Equipment

Figure 2. Pin Configuration (Top View)
Table 1. PIN DESCRIPTION

Pin	Symbol	I/O	
1	VDDXD	Power	Connect to a +3.3 V source.
2	S0	Input	Spread Spectrum Select pin 0. See Spread Spectrum Select table. Internal pull-up resistor.
3	S1	Input	Spread Spectrum Select pin 1. See Spread Spectrum Select table. Internal pull-up resistor.
4	S2	Input	Spread Spectrum Select pin 2. See Spread Spectrum Select table. Internal pull-up resistor.
5	X1/CLK	Input	Crystal interface or single-ended reference clock input.
6	X2	Output	Crystal interface. Float this pin for reference clock input CLK.
7	PD	Input	Power down. Internal pull-up resistor.
8	OE	Input	Output enable. Tri-state output (High=enable outputs, Low=disable outputs). Internal pull-up resistor.
9	GNDXD	Power	Connect to digital circuit ground.
10	IREF	Output	Precision resistor attached to this pin is connected to the internal current reference.
11	CLK3	Output	Selectable 100/200 MHz Spread Spectrum differential compliment output clock 3.
12	CLK3	Output	Selectable 100/200 MHz Spread Spectrum differential true output clock 3.
13	CLK2	Output	Selectable 100/200 MHz Spread Spectrum differential compliment output clock 2.
14	CLK2	Output	Selectable 100/200 MHz Spread Spectrum differential true output clock 2.
15	VDDODA	Power	Connect to a +3.3 V analog source.
16	GNDODA	Power	Output and analog circuit ground.
17	CLK1	Output	Selectable 100/200 MHz Spread Spectrum differential compliment output clock 1.
18	CLK1	Output	Selectable 100/200 MHz Spread Spectrum differential true output clock 1.
19	CLK0	Output	Selectable 100/200 MHz Spread Spectrum differential compliment output clock 0.
20	CLK0	Output	Selectable 100/200 MHz Spread Spectrum differential true output clock 0.

Table 2. OUTPUT FREQUENCY AND SPREAD SPECTRUM SELECT TABLE

$\mathbf{S 2}$	$\mathbf{S 1}$	so	Spread\%	Spread Type	Output Frequency
0	0	0	-0.5	Down	100
0	0	1	-1.0	Down	100
0	1	0	-1.5	Down	100
0	1	1	No Spread	N/A	100
1	0	0	-0.5	Down	200
1	0	1	-1.0	Down	200
1	1	0	-1.5	Down	200
1	1	1	No Spread	N/A	200

Recommended Crystal Parameters

Crystal Frequency Load Capacitance Shunt Capacitance, C0 Equivalent Series Resistance Initial Accuracy at $25^{\circ} \mathrm{C}$ Temperature Stability Aging

Fundamental AT-Cut 25 MHz
$16-20 \mathrm{pF}$
7 pF Max 50Ω Max $\pm 20 \mathrm{ppm}$ $\pm 30 \mathrm{ppm}$ $\pm 20 \mathrm{ppm}$

Table 3. ATTRIBUTES

Characteristic	Value
Internal Input Default State Resistor (OE, Sx, PD)	$110 \mathrm{k} \Omega$
ESD Protection Human Body Model	2 kV
Moisture Sensitivity, Indefinite Time Out of Dray Pack (Note 1)	Level 1
Flammability Rating \quad Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	132,000
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V_{DD}	Positive Power Supply	$\mathrm{GND}=0 \mathrm{~V}$		4.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage ($\mathrm{V}_{\text {IN }}$)	$\mathrm{GND}=0 \mathrm{~V}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 Ifpm 500 lfpm	TSSOP-20 TSSOP-20	50	
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 3)	TSSOP-20	23 to 41	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder			265	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
2. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

Table 5. DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 4)

Symbol	Characteristic	Min	Typ	Max	Unit
VDD	Power Supply Voltage	3.135	3.3	3.465	V
I_{DD}	Power Supply Current, 200 Mhz output, SSON		135		mA
$\mathrm{I}_{\mathrm{DDOE}}$	Power Supply Current when OE is Set Low		60		mA
$\mathrm{I}_{\mathrm{DDPD}}$	Power Supply Current (PD = Low, no load)		1.5		mA
$\mathrm{~V}_{\text {IH }}$	Input HIGH Voltage (X1/CLK, S0, S1, S2 and OE)	2000		$\mathrm{~V}_{\mathrm{DD}}+300$	mV
V_{IL}	Input LOW Voltage (X1/CLK, S0, S1, S2 and OE)	GND -300		800	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. Measurement taken with outputs terminated with $\mathrm{R}_{\mathrm{S}}=33.2 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$, with test load capacitance of 2 pF and current biasing resistor set at 475Ω. See Figure 5. Guaranteed by characterization.

Table 6. AC CHARACTERISTICS (VD $=3.3 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Note 5)

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{f}_{\text {CLKIN }}$	Clock/Crystal Input Frequency		25		MHz
$\mathrm{f}_{\text {CLKOUT }}$	Output Clock Frequency		100/200		MHz
Vmax	Absolute Maximum Output Voltage (Notes 6, 7)			1150	mV
Vmin	Absolute Minimum Output Voltage (Notes 6, 8)	-300			mV
Vrb	Ringback Voltage (Notes 9, 10)	-100		100	mV
VOH	Output High Voltage (Note 6)	660		850	mV
VOL	Output Low Voltage (Note 6)	-150		27	mV
$\mathrm{V}_{\text {CROSS }}$	Absolute Crossing Voltage (Notes 6, 10, 11)	250		550	mV
$\Delta \mathrm{V}_{\text {cross }}$	Total Variation of $\mathrm{V}_{\text {CROSS }}$ (Notes 6, 10, 12)			140	mV
$\mathrm{f}_{\text {MOD }}$	Spread Spectrum Modulation Frequency	30	31.5	33.33	kHz
SSC RED	Spectral Reduction (Note 13), $3^{\text {rd }}$ harmonic		-10		dB
$\mathrm{t}_{\text {SKEW }}$	Within Device Output to Output Skew			40	ps
$\phi_{\text {Noise }}$	Phase-Noise Performance SS OFF $\quad \mathrm{f}_{\text {CLKout }}=100 \mathrm{MHz}$				$\mathrm{dBc} / \mathrm{Hz}$
	@ 100 Hz offset from carrier		-110		
	@ 1 kHz offset from carrier		-123		
	@ 10 kHz offset from carrier		-134		
	@ 100 kHz offset from carrier		-137		
	@ 1 MHz offset from carrier		-138		
	@ 10 MHz offset from carrier		-154		
$\mathrm{t}_{\text {OE }}$	Output Enable/Disable Time (All outputs) (Note 14)			10	$\mu \mathrm{s}$
touty_Cycle	Output Clock Duty Cycle (Measured at cross point)	45	50	55	\%
t_{R}	Output Risetime (Measured from 175 mV to 525 mV , Figure 7)	175	340	700	ps
t_{F}	Output Falltime (Measured from 525 mV to 175 mV , Figure 7)	175	400	700	ps
$\Delta \mathrm{t}_{\mathrm{R}}$	Output Risetime Variation (Single-Ended)			125	ps
$\Delta \mathrm{t}_{\mathrm{F}}$	Output Falltime Variation (Single-Ended)			125	ps
Stabilization Time	Stabilization Time From Powerup $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		3.0		ms

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Measurement taken from differential output on single-ended channel terminated with $R_{S}=33.2 \Omega, R_{L}=50 \Omega$, with test load capacitance of 2 pF and current biasing resistor set at 475Ω. See Figure 5. Guaranteed by characterization.
6. Measurement taken from single-ended waveform
7. Defined as the maximum instantaneous voltage value including positive overshoot
8. Defined as the maximum instantaneous voltage value including negative overshoot
9. Measurement taken from differential waveform
10. Measured at crossing point where the instantaneous voltage value of the rising edge of CLKx+ equals the falling edge of CLKx-.
11. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
12. Defined as the total variation of all crossing voltage of rising CLKx + and falling CLKx-. This is maximum allowed variance in the VCROSS for any particular system.
13. Spread spectrum clocking enabled.
14. Output pins are tri-stated when OE is asserted LOW. Output pins are driven differentially when OE is HIGH unless device is in power down mode, $\mathrm{PD}=$ Low.

Table 7. AC ELECTRICAL CHARACTERISTICS - PCI EXPRESS JITTER SPECIFICATIONS,
$V_{D D}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min	Typ	Max	PCle Industry Spec	Unit
tj (PCle Gen 1)	Phase Jitter Peak-to-Peak (Notes 16 and 19)	$\begin{gathered} \text { f = } 100 \mathrm{MHz}, 25 \mathrm{MHz} \text { Crystal } \\ \text { Input Evaluation Band: } \\ 0 \mathrm{~Hz} \text { - Nyquist (clock } \\ \text { frequency/2) } \end{gathered}$	SSOFF		10	20	86	ps
			$\begin{gathered} \hline \text { SSON } \\ (-0.5 \%) \end{gathered}$		19	28		
tREFCLK_HF_RMS (PCle Gen 2)	Phase Jitter RMS (Notes 17 and 19)	$\begin{gathered} \mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz} \text { Crystal } \\ \text { Input High Band: } \\ 1.5 \mathrm{MHz} \text { - Nyquist (clock } \\ \text { frequency/2) } \end{gathered}$	SSOFF		1.0	1.8	3.1	ps
			$\begin{gathered} \hline \text { SSON } \\ (-0.5 \%) \end{gathered}$		1.1	1.9		
tREFCLK_LF_RMS (PCle Gen 2)	Phase Jitter RMS (Notes 17 and 19)	$\mathrm{f}=100 \mathrm{MHz}, 25 \mathrm{MHz}$ Crystal Input Low Band: $10 \mathrm{kHz}-1.5 \mathrm{MHz}$	SSOFF		0.1	0.15	3.0	ps
			$\begin{gathered} \hline \text { SSON } \\ (-0.5 \%) \end{gathered}$		0.8	1.1		
tREFCLK_RMS (PCle Gen 3)	Phase Jitter RMS (Notes 18 and 19)	$\mathrm{f}=100 \mathrm{MHz}$, 25 MHz Crystal Input Evaluation Band: 0 Hz Nyquist (clock frequency/2)	SSOFF		0.35	0.7	1.0	ps
			$\begin{gathered} \hline \text { SSON } \\ (-0.5 \%) \end{gathered}$		0.55	0.8		

15. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.
16. Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86 ps peak-to-peak for a sample size of 10^{6} clock periods.
17. RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1 ps RMS for tREFCLK_HF_RMS (High Band) and 3.0ps RMS for tREFCLK_LF_RMS (Low Band).
18. RMS jitter after applying system transfer function for the common clock architecture.
19. Measurement taken from differential output on single-ended channel terminated with $R_{S}=33.2 \Omega, R_{L}=50 \Omega$, with test load capacitance of 2 pF and current biasing resistor set at 475Ω. See Figure 5. This parameter is guaranteed by characterization. Not tested in production.

Figure 3. Typical Phase Noise at $100 \mathbf{~ M H z}$; integration range $\mathbf{1 2} \mathbf{~ k H z}$ to $\mathbf{2 0} \mathbf{~ M H z}$ (Input source at $\mathbf{2 5} \mathbf{~ M H z}$ and HCSL output termination)

Figure 4. Typical Phase Noise at $200 \mathbf{M H z}$; integration range 12 kHz to $20 \mathbf{~ M H z}$ (Input source at $\mathbf{2 5} \mathbf{~ M H z}$ and HCSL output termination)

HCSL INTERFACE

Figure 5. Typical Termination for HCSL Output Driver and Device Evaluation

LVDS COMPATIBLE INTERFACE

Figure 6. Typical Termination for LVDS Device Load

Figure 7. HCSL Output Parameter Characteristics

NB3N51034

ORDERING INFORMATION

Device	Package	Shipping †
NB3N51034DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
NB3N51034DTR2G	TSSOP-20 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TSSOP-20
CASE 948E-02
ISSUE C

ON Semiconductor and (0iN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: $303-675-2175$ or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

